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THE MI$?IMUV ENERGY LOSS PROPIJIJLER1

By ~. Poliakhov

SUMMARY

Various cases are presented of the solution of the
probleu ot the most efficient propeller, more general
cases being considered than the one by Betz in 1919:
namely, that of a propeller under a limiting light load,
The problem is solved directly and also with the afd of
the Ritz method which became readily applicable after
the author proposed a method for the solution of the
propeller problem, in gener?l, with the aid of trigono-

metric series. The design of a propeller with the aid
of this method is given and an analysis is made of the
effect of the fuselage and of the viscosity coefficient
M on the character of the solution of the variational
problem.

SYMBOLS

F total power- of propeller (no~dimensional) =
>>%<
@f

‘P useful power 0$ propeller (nondimensional)

F nond~rnensional circulation (kI’/4nwR2)
.

k number of blades

w angular velocity of propeller

R radius of propeller

‘tx 9 Vax nondimensional tangential and axial veloc”i–
. . ties induced in.th-e plane of the pro-

peller disk by the free helical vortices
on the line of the bound vortex

----
~Report No. 455, of the Central Aero—HydrodynamicaL

Institute,, &IOscOw, 193?.
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7 nondimensional tadius of propeller; symbol is also
used for W7 the nondimensional rotational
velocity

.’ \/

+——-——
ii JW+(WT)’ , resultant of 7 and Ii)T*

(nondimensional) Velocity

p,w pressute and resultant velocity at infinity
ahead of the propeller

-——

A
—....—-.—,.

p2 , W2 = wr2 – V.j....)a+ (V i-va~)2 , pressure and

velocity at infinity behind the propeller

Ap=P–p2

TJlal = va,2/.2, Vftl = v~2/2

T !)ropeller thrust

&n ~ iaduced velocity at infinity behind propeller

v blade setting

h yi”o~eller-fusela.ge interference coefficient

~rIi i:~.terference velocity of propeller-fuselage Syster,:

OIJ THE BETZ SOLUTION OF THE Vj@~ATIONAL PROBLEM OF

THE AIRPLANE PROPELLER

As is known, the credit belongs to Am Betz for giviilg
an a.p;jroximate solution of the problem of the propeller
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mf minimum energy loss for the case of a finite number
of blades.’” (See reference 1.) In general, the problem
of the variable propeller in an ideal fluid may be stated
thus : It is required to find the condition under which
the integral expressing the total power of the propeller
(in nondimensional units):

1

5-
while the integral

(1)

(2)

c
where Fn is the useful nondimensional power of the

propelle;. In the integrals (1) and (a) ~ is the ,
nondimensional circulation equal to kr/4nwR%

where

k number of propeller blades

w angular velocity of the propeller

R propeller radius

The magnitudes Ttx an~ Tax afie the nondimen-

sional tangential and axial velocities induced in the
plane of the propeller disk by the free helical vortices
on the line of the bou~d vortex. These velocities are
unknown functions of r the character the change of
which with the nondimensional Tadlus ‘-F is likewise -an—
lgown, An added condition imposed on the function
T (7) $To~ a finite number of blades with free tips is:

77(0) = r(l) = 0.
.

It follows immediately from what ,was said in the----- -
for~going, t’hat the losses of the screw propeller are
expressed as follows:

o

.,. -— .—.—. .——
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It is not difficult to see that the expression in paren–,,..
thesis “is no other than the modulus of the vector product:

in which To, a“ and ;0 are unit vectors in the
tangential, axial, and radial directions, resyective~y~
and therefore

.1il d
.

TO compute the true angle between the velocities
—> —>
w ant wn 1 use is made if the Bernoulli equation

which is written down for a streamline through the pro—
peller blade. If the pressure and velocity at infinity
ahead of the propeller are p and W while at infinity
behind the pr~peiler they ar; pa.+ . and W2

= J(u D2- vt2)2 +- (v -1-va2)2 the Bernoulli equation

gives immediately:



NACA TM No. 106? 5

wher e AP=P– Pa. Denoting for briefness vaz/2 and
.,.,. ..

%!/% respectively, by V’al and VI*l thus

The magnitude Ap/p at infinity behind the pro-
peller is constant along the same streamline but changes
in passing from one streamline to another and is a
-periodic function of the polar angle” G on which the
fluid particles of the streamline considered are dis–
placed relative to a certain initial helical surface
which may be taken as one of the vortex surfaces origi-
nating at the propeller blades. The same can be said
with regard to the induced velocities vt2 and ~aat

The -period of all these magnitudes is equal to 21T/k
where k is the number of blades. Yor heavily loaded
propellers the magnitude AP/~ may reach large values
For lightly loaded propellers this magnitude is span
in comparison with the values Vvaa and Wr Vta. I?or

a propeller with an infinite number of blades Ap/p is
given by

Ra

rz

In most of the yresent day theories of the lightly
**

loaded propeller it is assumed that Wlnll;> (Zletz,

?randtl, Kawada, etc. ) to which the relations as follows
correspond:

hence (fig, 1) it follows that

IT”vfal- wrvttl = O

.It is not diff$cult to see tha~the assumption of the
perpendicularity of -—~1

nz to g is equivalent to

neglecting in formula (a) the magnitudes v12a= and.
v12t1 — Ap/2p, that is, to the linearization of the

problem. Such linearization is possible only for the
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case of lightly loaded propellers when the magnitude
.v-Ial ‘is actually small by comparison with V and

~’ztl – Ap/2p is small by comparison with wr . More-

over, the foregoing theories assume also that:

‘t2
%1 = ~- = ‘tl

‘a2
P1al = ‘~- = Va~

where Vtl a12&. ‘.az are the induced “velocities in the

plane of the propeller. This second assumption is equiva–
lent to the assumption that the helical vortices lie on
the surfaces of circqlar cyl$~ders and have a constant
axial pitch.~ In what follows it is assumed in corre-
spondence with what has been said that

‘az = ‘nl Cos ~

Vtl = ‘nz ‘in@

The assumption of the foregoing relati~ns involves
certain errors in the determination of the velocities
‘ax and v~l. The effect of these erroxs on the

values of the velocities wr - vti and v + v~= In the

expressions for the thrust and power is very small, how–
ever, because the velocities vtl and Val for light

and moderate loads are small by comparison wit,h @r and
V but nevertheless not so small that they can be neg-
lected. Thus rejection of the component (W12n~

–J-9>

by comparison with Vvlax –,WrVltl in formula (a) does

not at all mean that ‘tl should be qeglected by com—

parison with wr and ‘al by comparison with V in
the expressions for the thrust and power. Thus, for
example-, -an error even of 10 percent in the determina—
tion of ‘al when taken equal to ().lV gives in the
-——.—. —— —-

lIn the linearized theory this assumption is a
simpj.e consequence of neglecting Va and vt by com–

parison with V and mr in the formulas of Biot—Savart
for determini~g ‘al and Vtx.



expression for v +- Tal an error of less than 1 percent
as can easily be verified by compl~tat ion. Check compu–
tations of propellers show that the foregoing assumptions ,
with regard to Vtl and ‘al -permit the obtaining of

values fQr P and T in very good agreement with the
results of experiment.

T~ll )?80BLEII OY BETZ AND ITS SOLUTION

It is quite evident that the problem of the pro-
peller of maximum efficiency is equivalent to the prob–
lem of the propeller ~ith min%mum e~ergY loss since
finding the minimuu F for given ~P is equivalent to

finding the miuimum of X = 7 - Tp . An exact solution

of this problem presents very great difficulties and
for this reason it is necessary to solve ~t by making
some simplifying assumptions. Depending on the charac-
ter of these assumptions vario~s solutions are ,obtained.

The preli.~inary problem solved by Betz is the fol-
, lowing: To find the conti:tioqs for which

.
J.

‘J~. ~Vtin~dF= lninimum (4)

if o 3

~p =
J

~ ~ d; = constant (5)
.

0
Thus , in h%s initial solution Betz neglects the velocity

*
Tt ~ by comparison with w5? and assumes that Wn~ -!-~?

. The detailed solution of the problem for the case -assumed

by PrandtZ that ‘> 1 ‘>Wnl J._WI was presented in CAHT Report
No. 324. In view of the importance of the Betz problem
for further discussion, the method of its solution will
be briefly presented, particularly since the method Pro-
posed by Betz himself is not very’ clear and at times

... raises some doubt as to its rigor.

The vortex sheet formed by the helical vortices at
infinity may be co~sider.ed as a surface of discontinuity
of the potential @ of the flow which takes place out–
side this sur~ace. The circulation corresponding to a

L,:-. .— — –—



NACA TM NO. 1067 8

yropell. er element at any radius ~ will be equal to the
potential difference between the points on the radius at
each side of the surface of discontinuity; that is , will
be equal to

where the subscripts t and b denote that the poten–
tial @ is taken, resPecti~ely, at the IItopll and lf~ottomll
sides of the helical surface, where by the IItopllside is
meant that side which is in the direction of motion of the
firopeller. Assume therefore that the helica~ vortices
have a constant axial pitch over their entire extent in
which case it may be verified that the induced velocity
in the plane of the propeller ‘n I is equal to half the

velocity wn ~ at a great distance behind the propeller.

It is assume d,rnoreover, that T~2_!_-~ and may then bemw..itten

dcJWn~ = —
(3XA

that is, the derivative along the normal to the surface
of the potential “@ the normal being in the direction
from top to bottom side of the surface. On the basis of
what has been said the expression for the losses may be
written as follows:

R

E=%
J J!

(@t- @b)$#n W dr = ~2@- Qt ~ndf- ,2
JJ

I&) d%~df
#.

G *t fb
where k is the number of blades and df = W dr dt is
the element 0$ surface swept out in time dt by the

t=1

bound. vortex of the blade so that
f

ifdr = Wdrdt. This

o

surface is two-sided and therefore the difference between
the integrals in the formula for the losses may be written

- -- in the..form

(6)

I?rom the second formula of Green there is obtaine”d
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—>
where v is the Hamilt ontan operator. Since the fluid
in the case considered is incomyressibze V2@= O and
therefore

where dT is the element cf volume of the fluid dis—
placed in time dt by a surface element in the direction
of the normal. The magnitude pdT = dm is the.:mass of
fluid included within this volume and therefore the loss
E represents the kinetic energy of the fluid at infinity
displaced in unit time by the propeller hades. To solve
the problem of the most efficient propeller, again pass
to nondimensional notation and then c’btain

Let two flows le given with corresponding potentials @*l
and @x!!. i~ow consider a third f’low with ”potential
Q)*II –Q*’ and shall then have

. .

f*

=+Jrr R(@*ll’_JJ’ 1

2
@*l) dT>o.

i
(8)

I -

‘T
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The condition of equality of thrust is written in the form

U
**’Cos fhij”=

u
~“” COS ~d~ (9)

f* f*

..-.,. On -the other hand for an incompressible fluidi on the basis
of the third formula of (keen there is obtained

(lo)

Assuming that the flow with potential @*t~ possesses the
property that

where %72 is a certain constant, and remembering the con-

stancy of Fp there is obtained immediately

—11/E =F’-F’>O

and therefore
F“<F. (11)

It follows that the flow corresponding to the propeller with
the minimum loIIs of energy can be pictured as a uolid vortex
sheet at infinity moving in the axial direction with velocity

iia.

The induced velocities in the plane of the propeller
disks are obtained by the formulas:

-.



NACA TilNO. 106’Z 11

,.. . ~rom,,,the ,.pr.,oof,.giyen in the foregoing’ it is evident that
the theorem holds for a propeller with any number bf
blades and in particular for a pro~eller with an infinitely
large number of blades. In order to show that the fore–,
going limiting transition does not affect the character
of the solution the expression is written for the losses
in the case of the propeller with infinite num%er of blades.
Therefore

Setting up the oquat~on of Jiuler for the function
....
y*<~_ ~l~p (where .&L is a donstant) , write,

according to the rules of the calculus of variatibnv

hence

wh ere

aqd therefore

(13)

i___ —.
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which accurately agrees with formulas (12).,. .,

l?he circulation distribution giving the required
velocity distr$lut ion changes of course with the_number
of blades since the form of the functions ‘t 1

“(r) and

Yal (F) varies with this number,

If the useful -power of the bla~e is expressed in
the forml

1

kpi =7
J

~5FdF (14)

t
as is done by Betz and the total -power in the form

.
A

F== J’F(T + za~)”@d7 (15)

i
the expression fot tho losses must then be written as

(16)

k

To obtain the mininum of the integral (16) under the con-
dition that the integral (14) remain constant is equiva—
lent to the problem of finding the minimum of the integral
(15) under the conditions:

(17)

that is , under the conditions of equal thrusts and equal
rotational losses for the propellers conpared.

The foregoing prpblem is thus a variational problem,.. ,., ,..,..
with stronier conditions imposed than t“lie”’problemof Betz
and refers to the propeller with maximum axial efficie~cy
leading to the answer ;aL = constant .as was shown in CAHI
Report No. 324. Unfortunate l~-”~n the latter report the
———....———-——.——— —___-- .——u — ——.—— . ——
1 lThat is , assuming the flow is irrotat ional.

1
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restrictions iuposed on the yroblem were not brought Out
., wit-h-sufficient clearness and therefore on reading the

second section. of the third part the impression may be
gathered that the solution Tal = constant was con—

trasted with the solution fix = constant (Betz solution);

that is, a distinction was made between a propeller with
minimum loss of energy and a propeller with maximum ef—
ficien’cy. Actually, it is not a question of such -a coQ—
trast but simply of two aifferent problems: namely, the
propeller with minimum loss of energy and the propeller
with maximum axial effici.entiy. The solution of Betz ap–
preaches more nearly the true solution of the problem of
the prop~ller with maximum efficiency since there is
approximately taken into account the change in the rota–
tional losses in passing from one propeller to another
with the same useful power. It must be said, however,
that for propellers with the same diameters, angular
speeds, and, useful yower, the rotational losses consti-
tute almost a constant percent of th~ power P.

CASE OF THE MODERATELY LOADED PROPELLER

The problem of Be’tz was solved actuaLly for the case
of a limiting light load on the propeller in which case
only may be written

1.

o

In the present section consider the case of a lightly
and moderately loaded propeller for which is written

o

——.—— — —— ——

‘iThus, in accordance with what was said in the fore—
going, the equation is not linearized $or the total and
useful powers but use is nade of the linearized theory only
in determining the velocities v~l and var~.

—. —.—.
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The foregoing expressions are satisfied, as check computa-
tions show, with sufficient accuracy for the previously
mentioned class of propellers. The expressions (18) on the
basis of the considerations of the previous section may be
written in the form

where

df2*=~cos(3d~dt*

Now obtain the variations 6Fp and 6P. For the first of

these there is obtained

But from the third formula of Green

JJ( ~q,ed@.

\
–-,)*%) df~=~~~(,,,*~2&*--a)*~~,@*)d.*,
dn

f. ‘ %*

which for an incompressible fluid gives

H

~~~d(j).

JJ

Q*&@_-.jf**=—dndfl?
f,;

and therefore

In the same way t-here is obtained

The condition of the minimum ~ for given Fp is expressed

Since the for%going equation is true for any s~,the condi-

tion must be satisfied that

,, .—
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hence$ noting that

“Cos’-p=; , v
sin~= ~,

w
now obtain

hence

where

From the foregoing two formulas there is obtained

and therefore

hence

and

v“-iii2 -V’—T2= ()

where the positive sign corresponds to the physical meaning
of the problem. For small values of the ratio W2 /2v the
equation may be written approximately

and therefore
.—

—_ 7-(V+iil)
~97)/, = “~1 ;2+ (V+–zl)

(19)
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where +1 d~notes ;2/2. These formulas were proposed
,,, — .,,.,-.

bY Prand~-l “~fi--~9”’19without” -’anyproof ‘fof the case Of mod-
erately loaded propellers. Zn 1927, in volume VII of the
Handbuch der ~hysik and also in 1932 in Ingenieur—Arch iv,
Heft 1, A.” Betz gave a proof that formulas (19) are a
solution of the variational problem of the screw propeller.
His proof , however, was based on ‘the so+called method of
displacements and cannot be called entirely convincing.1

Z’n concludirtg this section the equation is derived
which must be satisfied by the potential @ of the flow ‘
outside the vorte~ sheet. For this purpose now write
the equation of continuity of the f2.ow va~ = O in
cylindrical coordinates. Therefore

(20)

In order to redqce this eqtiation to .a simpler form
in the case of flow about a helical surface the new
variables are introduced

C= o-+- -z-; !f-=p

then

‘and the equation of continuity assumes the form

(21)

This is the required equation fer the potential ~
in terms of the independent variables C and p.

—-...~.. . .,.
The ‘additional conditions which must %e sat~sfied

by the function are the following: for P ZPo, where
——— ——.

JAt present a r igorous solutiop has been obtained of
the variational problem for the case of ‘the nonlinear ized
theory. .

Iii
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., ,P& is t~e value of p at the tip of the blade @ must

be a single valu’e and continuous function of p ..and !.;
moreover, @ must %e an odd periodic function of & and
become zero for p = ~. I?or P<PO@ must undergo a

discontinuity equal to I’ on the vortex surfaces.

On the surface “of the vortex sheet for which !!=0
the condition holds:

wher e f(r) is a given continuous function of r. I?or
the case of a rigid helical surface this function is of
the form

f(r) = w2 cOS ~ = Wa _Yl__=–
A/72 + V2

where W2 is a constant magnitude.

Equation (21) was first obtained by Goldstein in
1929 in investigating the flow of a solidified vortex
sheet of constant axial pitch.

,-’, ,., ,,, ,,, ,,,
,,, , .,, ,.,

,.. .,:
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SOIIUIPION OF THE PROBLEM Oli’ THE MOST EFFICIENT PROPELLER

WITH THE AID 03’THE RITZ METHOD

As was shown earlier the problems of the propeller
with finite number of blades are well solved with the aid
of trigonometric series. Then assume that the circulation

~1 is such that it can be expressed by the series

F,=~A.sinnO,
n= 1

the total Induced velocity ~nx is expressed by tho

formula (see reference 2)

(1)

(2)

whore Cn are known values depending on 6 and on ~

and k as parameters, and ~ and e art connected with
the radii of the elements of the propelle by the equations

F=E+I–ZcosO; u!7=ZsinfM0,

wh or● % is half the effective part” of the blade and ~
corresponds to ittanoneffective part. Since It Is assumed

that
+-
Wn~~W it is clear that

(3)

(4)

Bearing in mind formulas (1); (2), (3), and (4) then
write equations (18), eection 3, in the form

.

(5)

where
F=t+i-ZcO~o, an=n slnnO+Cn. (7)

Removing the parentheses formula (5) Is readily reduced
n

(8)

—
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Then denote the first integral of thts formula by I~n

and moreover, set

zcos~sinno(S+E— Zcos0)= b., (9)

Eormula (8) may then be written a-
e- —., .

(10)

where

=7 =
[ 1

-# (E+~)A1—~$ .

The expressions under the integral signs may be written
in the form

~A.b. ~A.a.=

=A, bl(A, a1+A,a2+ . . . +AJQ+

+A,b~(A,a,+A~a9+ . . . +A.aJ+
+ . . . . . . . . . . . ”. . . . . ...+

+A.b. (A,a, +A,a,+ . . . +A.an) =

Subs t

where

Ituting thi

n,x, V=l,2,3. ..n

I:x= j’GvxdO.
1)

(11)

there is obtained

(12)

(13)

Passing to the expression for the useful power then
find

n

(14)

The first integral is computed and gives

2 [
-A2” n –1AJ,,’=i7 (t+~)A1—r..~ ~L; (15),.. n

Setting
.,

~ ~sin726sin~=1,1, (16)

there is obtained

(17)

11 — —————
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whore
r.

I:i= Jaxlvde. (18)
o

Thus there is finally obtained

(19)

(20)

Now proceed to the solution of the variational problem
of interest: namely, to find the circulation distribu-
tion which renders the power ~1 a minimum while main-

taining the useful power of the propeller constkhnt. It
is assumed that the propellers having their circulation
about the blades expressed by the trigonometric poly-
nomial are being dealt with.

m

r,= 2A* sinfze.
n=l

Thus the problem reduces to finding the coefficients An.

The LaGrange function will be of the form

~~*
Now obtain the derivative — and equate it to zero;

a Av

x,n= v=l,2,3. ..nz.

There should be such derivatives which will
equations with m+l unknowns where the “ (m + lfiv~hem
unknown will be A. Adding to these m equations the
expression for the thrust there is obtained m+l equa-
tions. The solution of this system of equations for a
practical computation of the propeller is very laborious
and for this reason before practically applying the ob-
tained results it is first necessary to do some prelimi-
nary work: namely, with given Y and A to find A and
P 1“ Taking a series of values of A there is obtained

a series of values for each A and for F1. Plotting

the graphs of Ai and T1 ag?inst A for the parameter

~ the propellers may then be readily designed with the
aid of interpolation. I?ow note that the above Integrale
are readily computed graphically once and for all for
gi~en n.

.. .. .. . . ... ., - . . . ..—--.. -.--— —-. -—-—— —
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As computations have shown, a restriction to three
coefficients A* is sometimes sufficient. The velocity,“.,
distribution””c’orr esponding to” the problem just solved
will he the same as that given by the formulas (19), sec-
tion 3. The circulation distribution corresponding to
the foregoing formulas can more conveniently be obtained
by the method proposed by the author in CAHI Report No.
324. This method, requires fewer computations than are re–
quired by the Ritz method,which is more of purely theoreti–
cal interest.

EFFECT OF.THE FVSELAG~ AND OF TIM COE3’FICIEWL’ w

Let 5LI and Y!tl represent the axial and tan—

gential (rQtationall velocity components at a certain
point of the propeller rotating in front of ~he fuse–
lage. If the airplane moves with velocity V relative
to the ground then the relative axial velocity of ap–
preach of the flow at the points of the propeller blade
will be

wher e
4

v t is the velocity arising from the effect of the

fuselage (retardation of the flow). This velocity for
a fuselage of arbitrary shape is a function of the rela—
tive radius F of the elements of the propeller and
also of the polar angle u referred to a certain fixed
direction in the plane of the propeller disk. In the
case where the fuselage is a body of revolution the
velocity Yif is a function only of F.

Now assume that the propeller blades are replaced
by rectilinear lifting vortices on the basis of the
theorem of Jou”kowski; then for P = O the following ex–
pression for the elementary power of the propeller:

wher e
vii

h!= c—
v + va~

. *

4A .—
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and the primes denote that all magnitudes are referred “
to the system propeller-fuselage.

.The-.total.power absorbed ly the propeller will be
equal to

The propeller does not impart the entire power ~
to the airplane but only a part since losses occur at
the propeller. The magnitude :; these losses will ‘be
given. The induced velocity ~z according to the ‘

theorem of Joukowski gives rise to a force ~TaldF di-

rected at right angles to the propeller radius opposite
to the direction of rotation of the propeller. Since
an element ef the propeller rotates with velocity _wr
the elementary losses corresponding to the fo’rce: r@al’~~
will equal

4E1 = ~!~al!~d~

In the same way the induced velocity T~% gives rise to

the elementary form i%tli dy parallel to the propeller

axis opposite to the direction of forward motion of the
propeller. The losses corresponding to this force will be

Thus the induced losses of the propeller will he equal to

1

o

It follows that the
the propeller blade

useful power which may be taken from
is equal to

. . .

The magnitude ~p is the power which is disposable by the
propeller-fuselage system since at the propeller blades only
the losses E are developed for M = 0. At light loads when
the values of ~;tl are not large’ and for not very thick
fuselages when vli is small Yy comparison with
expression for Y

~ the
p. may be approximately writtqn as:

L. ---! . . . . . .. . . . . .



where
,.... .,,.., ...hlt = ‘~~

v

The m~.gnitudes ht’ ~.nd hll taken in the system propel’ler-
fusela,ge depend on I’, a condition which renders difficult
the solution of the vnriationa,l problem, especially since
the finding of hf .&nd h!! is very complicated. If$
hovever, in remaining within the limits of the linearized
theory and assuming that

h! ;i#h!lz h==_ = f(r, cr)
7

where Vi is the v“eloc~ty produced in the “fluid by the

isolate~ fuselage the funiiamental equation of the vari—
atiohal problem (the Euler equation) will be

hence it follows that the solution of this problem will
be the same as for the case of the isolated propeller
since, as before,

It is no t%.& also that within the limits of the
linearized theory the effect of w is likewise excluded
since the effect of w on the total and useful powers
of the propeller is expressed through the terms:

0- 0-

l?he magnitude CD at the below critical angles of attack
“’‘--i-s-”almost con’s%arit”’with- resyect to ‘CL (or what amounts

to the same thing with respect to F). This magnitude
may be expressed, for example, by the empirical formula
of Toussaint

( CL),+o,076ijz+0.018f.1~~=
2 0.00612 (Wc )–5M15(3+1.116) l+c).l—

2/
(a)

,.. . — —
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where

w numerical value of the velocity in m/see;

c numerical value of the chord
,,.. -.. ,.,,

6 relative thickness of the profile

f relative maximum camber

From the foregoing formula it may be seen that the ef-
fect of CL on CD is very small and for this reason the

value of pl cannot change the charaoter of the solution
of the variational problem. In making use of formula (a)
th”is effect may, moreover, easily be taken into account, tho ●

functions 6(Y) and f(~) being given:

DESIGN OF PROPELLER 3’OR THE CASE -al = conet

In the general case the expression for the power may be
written in the form:

++
or assuming that the induced velocity Wn;lw and replaci-

Assuming that the circulation ?1 is expressed in the
form of a trigonometric series:

2~1= Ansinnti,
with

7=t+z—zcose,

lIf the effect of CL and CD is neglected.,.
21t is noted that the de’~ign,of the propeller for the

case Val = conet necessarily requires ~ # O. Otherwise

for %+0 it should be Vtl ~~ which does not corre-

spond to reality.
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=>nZ{(t+ Z)’JsinfzosinfM0+ZzJsinn0cos20sinf)d~-
0 0

— 2 (t+ Z)ZJsinnO.cOsO.sinOde}*
o

{
=~ (E+~)2A, +

}
(E+ ~)zA, ~ +Z3~An}sinn6cos’6 sin6d8.

o

But

FZs>jsin n 9 COS2flsin9dfJ= ~ 2[ An ‘sin n6(1 +cos20)sin M3=
o

The expression for ~1 assumes the form

F—=
k

PI = (v+ ;a,)+z
, [ 1A1(:+~)–ZA~ +

[
+Pm ~ (E+Z)’ Al ~–(;+~~’A,;+,

1+l’+(A, +A,)– ZV6.,A, + – h@6a,A,+.

since Fa ~ = constant it may be wxitten
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where

A:=&.
9*,

For the thrust T, there is obtained

.
~1=i~l [(%=,1 )-P (v+ 6.,)]d;s}r 7– Y?” dF–

t t ( r )

— (V+=al) !@ ;

But by the mean value

where
~,*

is a certain intermediate value of ~l. Thus

Now redesign the propeller 3CMB-1 with q = 34°, leaving
the shape of the blades and camber the same. Eor

?
T then

take the value = 0.4, for the mean ralue of the inter-
ference coefficient hm = 0.041 so that vi = 0.384. For

km now take 0.025. The power of this propeller from a

preliminary computat ion was equal to ~ = 0.00129 and there-

fore F1 = 0.00043. Now find Al’, A21, and As:. For

this purpose now make use of the formula (G~I RePort NoD
324] .

—
— vn~
‘W”l .--.-.-= “m [Al(sin0+ C,)+ A, (2sin20+ G) +Ao (3sh 36+ CS)].

Cosp Esin0

ll!he propeller 3Cl!B-1 was located ahead of a body of
revolution the ratio of which midsection to the area swept
out by the effective part of the blade was equal to 0.180
.The coefficient hm was taken for the half body charactorlsed.,
by the same ratio. It may be noted that the problem {was solved
also with variable h ‘and It was fou,nd from the. mean +alue
theorem that h(~) = 0.045 and therefore 1 - h - 0.955.
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writing it for three sections F = 0.4, 0.6, 0.8
fOrm:

in the

,.

2?

where

+A2’
(

–fi+c2,)+A’’ 3,,

A:= ‘i_— .

‘V= ~

The values of Cik are taken from the curves (fig. 2),

no account being taken of the effect of the so+called loga-
rithmic term (tiee reference 3)9 because in obtaiaing Cik

the charts of T. Moriya were used in which this term was

likewise not taken into account near the singular point
(T=T’).

After substituting Cik now the following system of

equations is obtained:

1P055A,’+ 1,76A;+O,OIA,’= 0,156

l,21A1’+0,1A2’—3,04A~’=,0,153
1,025AI’—1,7AZ’— 0,16A,’=0,123

Solving this system there is obtained~

All = 0.1346, Aal =“ 0.0087, A ~ = 0.00367.

We further find Bz and Ba. Setting ~ = 0.2, then %= 0.4,

t+~ = 0.6 and

Al”t ( ~+ z) = 0.1346 0.6 =.0.08076
.

~+=o.z 0.0087 = 0.00174
—.

lqhe computations are approximate.
I



Subtracting the ~ower from t“he upper equation there is
obtained 0.07902.. I?urther

l-b~7 Al f--= 0.025 X0.4 X0.1346 = 0.001346

Subtracting the latter figure from 0.07902 there is ob-
tained !3.0’777’7.Multiplying the latter by –~ 0.4 = 0.628
there is obtained Bz = 0.0489. ITOW ~>rOc@cd2t0 the COLl-
putlation of

●
52.

(f + ~) ~i = 006X0.384 = 0.2304

r (% ’)27LLmpE+m2 +’-
\2/lj

= 0.025 (0.36 + 0.04)

= 0.025 X0.4 = 0.01

The coefficient befcre All is equal to 0.2404.

Al! X 0,2404 = 0.0325

lJ~(g+z) = 0.025X 0.6 = 0.015
!-- -
‘ v“”

1
~2+wm(t+i)A2f ‘–~1 d 0.207 XO.4X 0.008?=–0.00072

>.s . -... ....,,.._,,,,, ,,,,

..L. —,,... —.. . . . — —.-. — . ..——
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hence

B2= 0,0201,
There is obtained:

0,0489@a~+ 0,0201~~,— (),()0()43= O

or

~zal+ 0,412ti.,—0,0088 = O.

hence, the positive root will be

Gal= 0,0204

and therefore
Al= 0,00275

A,= 0,0001775

At= 0,00007275.
Now proceed to the determination of the thrust. A a-

cording to the general formula then find

~,= ~ ~ {0,00275.0,6— 0,2.0,0001775)— 0,025.0,4204.0,628.0,00275—

–-0,4.(),02()4~,”h 5
or

~1= 0,628 (0,00165 – 0,0000355) –- 0,000018

hence

71= 0,000997— 0,0131r,”.

The value of PI* is evidently less t

5 —0,0131F’,

~an (r. )max which

on account of the smallness of Aa and A3 may be assumed

equal to Al = O.00275 and this gives

~1= 0,000997— 0,000036= 0,000961
and therefore

*
0,384-0,000961~ 086

-7ef = 0,00043 ‘ .
Now compute the vaJ.ues of the circulation at the dif-

ferent radii making use of the formula

There is obtained

TABLE I
r

7 0.25 0.3 0.4 0.5 0,6 0.7 0.8 0.9 0.95

r, 0,001560,002070.002530,002690,0Q2670.002520.002220,001710.00126

In a check computation of the propeller 3CMB-1 for

vi = 0.384 there is obtained a propeller efficiency equal
to 0.818 wnich result agreed with the experiment. It may

be expected that the foregoing propeller computation should
give good agreement with the experiment.
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7-,‘ef

0.3

0.00207

0.0272

0,2728

0.2622

0,818

0,00044:

It is noted that

TABLE II

0.4

0.00253

0,0204

0,3796

0,369

0.9036

0,00084

0.5

0,00269
T0,6 0.7

0.00267...0.00252

0,0163

0.4737

0,4631

0,9443

0.00118

0,01055

0.0136 0.01165

0.5864 0.6884

0.5758 0.6778

0.9656 0,9774

0,001485(),00167

I
T,.f = 0.000922

~ef = 0.000925.0,4=086
0.00043 ‘

30

0.8 0.9

0.00222 0.00171

0.0104 O.m

0.7896 0.89

0.779 0.8894

0.9843 0.9887

0.0017 CMMJ48

it SS poseible to replace IC by Km

under the integral signs of the power and thrust since, as
computations have showms the values of ~ are very near

the values which are obtained for R* in applying the mean–
~alue theorem. In determining the true angles of ~ttack of
the blade elements it is necessary to make use of the t~ue
values ●f Sb In table 11 there is given the computation
of the valua of the effective propeller thrust for a given
circulation with variable K. As may be seen from this com-
putation ths value of the effective efficiency of the pro-
peller rotating in front of th-e fuselage was the same as in
the case.of the computation with K replaced by Km . lrig-

ure 3 shows the curves of the distribution of ‘~aoef along

the propeller radius for the case ~al m constant an~ for

the preliminary computatiam of the propeller ~OMB-1 (curves
II and I).

ETow there will be shown in what sense the term ‘dis-
tributlona of the effective thrust over the propeller r-adiua
must be understood. 9he elementary propeller thrust, as is
known. is expreosed”by the formula

.t’

.— . — —..—
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The elementary useful power imparted by the propeller to
the airplane is equal to (see s.ec..4):

wh ere Vi! is the change in velocity of the flow due to

the fuselage at radius 7. The useful power of the en-
tire propeller will be equal to

t

In correspondence with the foregoing formula it is con–
venient to speak of an effective thrust determined by
the formula

L

CLild ?-,1s0 :Jf i?.il zlsmcntary effective thrust. The rfia.gni—
tll(le l$!= l-h! shoT.~.lC.be thought of as taken in the
propeller-fuselage system. SinCe the effect Of K is
not large then take for ~t its value for the isolated
fuselage. In the process of computing the propeller by
the element method .it is necessary to determine the dis–
tribution of the effective thrust over the blades so that
by planimetering the gagnitude of Tef may then be found.

DESIGN 03’PROP3LLIIR FOR THE CASE til = const

It has been shown that the. YeLaettiy iqduced by the
helical vortices at the propeller blades is expressed by

y ,,
,.,. ,—, )(l-. ,, .,Wnl = -= “An -n’’sinntli- An Cn (0)

Lsin6 & )
(a)

L
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where Gn(6 ) are the coeff iciebts expressing the effect
of the helical-vortices. For the case wl ,= constant
tho foregoing formula may be written as

where

m 1.- — Y (Anl u sin n8 + Ant Cn) = cos ~ (b)
X sin4 _

n

An
An! = ;-

1

For the sections & = 0.4, ?3 = 0.6, 54 = 0.8 to which
2

correspond the values 92 = rr/3, t33= TT/2, e4 = ~ m the

following system of equations is obtained (the values of
Cik are taken from the curves of fig. 2 for ~ = 0.4):

1.055 Atl + 1.’76 At2 + 0.01 At3 = 0.078

1.21 All + 0.1 A~a- 3.04 At3 =0.106
.

1.025 A!l – 1.7 Ala- 0.16 At3 = 0.0985

The solution of this system gives approximately

Atl = 0.08495

A12= -0.006568

A13 =-0.00125”

The “values of ~ 3* = ~– are found by the formula
WI

and are gi”ven“i-ntabl& ‘III.
,.,..

b ,-,.,-~,,-—-=m= ,,—.,..-.! -.! I !!!!! ,,..——— . . . - , ..!..,. . . . . . . ..,, —.. .——.
—..
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,..
TABLZ III-

FR: ““’0“50“6‘“7~~,,~~160.0678 0.08 0.08625 0.0864

!Fhere is no need to set up and solve the system of
equations each time for various values of ~ since such
systems may be set up and solved once for all and tables
and charts set up for ~1* (fig. 4). The latter figure
gives the curves drawn from the values of Cik taken for

two-blade propellers. Since the effect of Cik is not

large (especially at large values of ~) and the chief
component in formula (b) is the first term, not dependkng

Q on the number of blades, these curves may be used, as com-
putations have shown, also for three-blade propellers.
The foregoing substitution may lead only tq an insignifi-
cant change in the tip losses. I?or the case i?L = constant

the expression for the power may be written as

or

where ~i=~-~i, Replacing under the integral signs

Am for p then compute the coefficients A and B.
The computations of these coefficients are given in table
v. After planimetering there are obtained for A and B
the values

-“. ,.. . ,/:. ... .-
. . . . .

A =“-0’:023’07”; B = 0.01289-.

and therefore
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., .- .,. ,., . .,.., .,,, ,,. .,. ,.,_

G12 + 0.559 GZ’ = 0.01865

(for F1 then take the same value as in the preceding

example) . Solving the obtained quadratic equation a posi–
tive-root equal to WI = 0.0316 ‘is obtaine~

TABLE IV.- VALUES 01 ~1*

i=->
v I 0.3 I 0.4
\v

0.1 “rG.03935 o ● 0447

.2 .05401 .0676

.3 .05535 .0726

.4 ● .04867’ .0678

.5 .044823 .0636

.6 .0425 \ .0606

0.5
—

0.04539

.07337

.082

.08

.G761

.0?32

FOR k = 2 AND

0,6
—

0.04546

.07525

.08562

.08625

.0831

.079

.

0.7

0.04539

.07357

.08396

.0864

.08389

.078

t= 0.2

0.8

0.0447

.068

.G762

.0’792

.0775

.0706

0.9

0.03935

.05445

.05932

●G616’7

.06062

.055

The value of this root permits finding the value of m,
by the formula:

The computation,of Al and B1 is clear from table

V in which are also computed the values T1l ef The com-.
putation gives Tef = 0.8$. It is seen that the computa-

tion for the case F1 = constant is sufficiently simple.

It may still further be simplified by computin~ in advance
the values A, B, A,l, and B1 as may- be done %y replacing,,, ,,,, ,,,,,,. .,, ..,.,,.,, ,., .,,,,.

1
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g by ~ under the int.ogral signs. This substitution

practically has no effect on th final resulte.
b

It may bo
noted also that the magnitude 1* may also be computed

In advance and for it curwes and” tables may be eet up. In,.,. .
determining “~z*,”””now htart from the Betz formula.

(c)

where @ is the Prandtl correction or the Goldsto’in cor-
rection. In employing this formula It Is necessary to as-

sume that ~=o. If a second appro~imatlon As desired, it
is necessary throughout to replace ~ ~Y ~ ~ WI’ and writ.

the expression for ~1* in the form VI - V (1-h)

TABLE V

,.

r’,
72

~2

72+ p

F(7’4+L72)

pm v

7-— pv

1 —h

‘~(1– h)

pm F

;2
r“,(7-$mTq——

~z+ v?

——
r(vi+w’)

W,zi=’, - -
J-z + vi

0,3

0,04867

0,09

0,16

0,25

1.2

0,01

0,29

0,818

0,327

0,0075

0,00507

0,3346

0,00488

0,000447

0,0000126

0,0004274

0,00035

0,4

0,0678

O,I6

0,16

0,32

1,25

0,01

0,39

0,9036

0,3602

0,01

0,01323

0,37

0,01005

0,000836

0,0000314

0,0008046

0,000726

1
Ourve 111 on fig. 3?

,.

—.

0,5

0,08

0,25

0,16

0,41

1,22

0,01

0,49

0,9443

0,377

0,0125

0,0239

0,3895

0,01558

0,001239

0.000038

0,001201

0,00113

0,6

0,08625

0,36

0,16

0,52

1,154

0,01

0,59

0,9656

0,386

0,015

0,0351

0,401

0,0207

0,00161

0,00004

C@o157

D,001516

0,7

0,0864

0,49

0,16

0,65

1,078

0,01

0,69

0,9774

0,391

0,0175

0,045

0,4085

0,0247

0,00188

0,0000376

0,0018424

0,0018

0,8

0,0792

0,64

0,16

0,80

1,00

0,01

0,79

0,9843

0,393

0,02

0,05

0,413

0.0262

0,001975

0,000032~

0,00194%

0,00191

0,9

0,06167

0,81

0,16

0,97

0,928

0,01

0,89

0,9887

0,395.

0,0225

0,0458

0;4175

0,0232

0,001735

0,000023$

0,0017111

0,001695

.— .— —
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(d)
—

where 31 ~ is taken from the first a.pproxinationo

In conclusion it is pointed out that the advantage
of the method of trigonometric series as conpared with
the methcd using formula (c) lies in the fact that with
the aid of the former before designing the propeller it
is possible to carry out a preliminary computation of
one of the series production propellers available corre-
sponding to the given conditions and estimate to what
extent the theory deviates from experiment. After a pre-
liminary computation it is then possible to proceed with
the design of the propeller with the “aid of the method
presented in the foregoing. Present day series propellers
deviate from the optimum apparently to such a small ex-
tent that the preliminary computation and the design prap-
or will refer to almost the identical conditions and there
is little probability that the theory should in the final
design give a different degree of accuracy than in the
preliminary computation.

COITCLUSIONS

On the lasis of the method of trigonometric series
a rational design of propellers was found possible making
use of the variation conditions the correctness of which
was shown in the paper. An illustrative computation showed
that (1) Propellers with wl = constant aro suitable for

design and have high efficiency, as corresponds with the
theoretical assumptions. (2) Propellers with val = con-
stant are also suitable for design and give good effi-
ciency which is, however, less than those under (l). (3)
The method of tri~onometiic series permits carrying out
a preliminary check computation of existing propellers
after which the design is improved. (4). The method of
Ritz may be used in solving the variational problem but
.,it,,isnot a rational method.., ,.,.. .,.., ‘,. ,,,.,.,,..,, ,._.,

Translation by S, Reiss,
National Advisory Committee
fez* Aeronautics.

I
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